Inverse to Erdos-Mordell inequality.

https://www.linkedin.com/feed/update/urn:li:activity:7157094333530177536?
utm_source=share\&utm_medium=member_desktop
Let a, b, c denote the lengths of the sides of a triangle $A B C$, let d_{a}, d_{b}, d_{c} denote the distances from an arbitrary point P inside the triangle to sides $B C, C A, A B$, respectively, and let $R_{a}:=P A, R_{b}:=P B, R_{c}:=P C$. Prove that:

$$
\frac{1}{R_{a}}+\frac{1}{R_{b}}+\frac{1}{R_{c}} \leq \frac{1}{2}\left(\frac{1}{d_{a}}+\frac{1}{d_{b}}+\frac{1}{d_{c}}\right) .
$$

Solution by Arkady Alt, San Jose, California, USA.

Definition.

For any line l on the plane and any point $P \notin l$ we denote via P_{l} such point laying in the half-plane distinct from half-plane marked by point P that $P P_{l} \perp l$ and $P P_{l}=\frac{1}{\operatorname{dist}(P, l)}$.
This point P_{l} we will call "Involution of P with respect to l " (Pic.1)

Pic. 1
Let P be the interior point in the angle $\angle A$ defined by the two half-lines a and b.
Let d_{a} and d_{b} be distances prom point P to lines a and b respectively and R_{A} be distance between P and A, i.e. $d_{a}=P M, d_{b}=P N, R_{A}=P A$.(Pic.2)
We will prove

Lemma.

Let P_{a} and P_{b} be involutions of P with respect to a and b respectively.
Then $P_{a} P_{b} \perp P A$ and $P E=\frac{1}{R_{A}}$ where E is intersection point of $P_{a} P_{b}$ and $P A$.
Proof.

Pic. 2
Let $P_{a} E_{1}$ and $P_{b} E_{2}$ be perpendiculars from P_{a} and P_{b} to $\overleftrightarrow{P A}$ respectively $\left(E_{1}, E_{2} \in \overleftrightarrow{P A}\right)$. Since $\angle P P_{a} E_{1}=\angle P M A$ and $\angle P P_{b} E_{2}=\angle P N A$ (as the angles which constructed by mutually perpendicular sides) then $\triangle P P_{a} E_{1}$ similar to $\triangle P M A$ and $\triangle P P_{b} E_{2}$ similar to $\triangle P N A$ and from similarity follows

$$
\begin{aligned}
& \frac{P E_{1}}{P P_{a}}=\frac{P M}{P A} \Leftrightarrow \frac{P E_{1}}{\frac{1}{d_{a}}}=\frac{d_{a}}{R_{A}} \Leftrightarrow P E_{1}=\frac{1}{R_{A}} \text { and } \\
& \frac{P E_{2}}{P P_{b}}=\frac{P N}{P A} \Leftrightarrow \frac{P E_{2}}{\frac{1}{d_{b}}}=\frac{d_{b}}{R_{A}} \Leftrightarrow P E_{2}=\frac{1}{R_{A}} .
\end{aligned}
$$

Hence, $P E_{1}=P E_{2}$ and $E:=E_{1}=E_{2}$ is intersection point of $P_{a} P_{b}$ with $P A$ and $P E=\frac{1}{R_{A}}$.
Let A_{1}, B_{1}, C_{1} be involution points for $P \in \triangle A B C$ with respect to lines $\overleftrightarrow{B C}, \overleftrightarrow{C A}, \overleftrightarrow{A B}$ respectively. Let $R_{a}^{\prime}=P A_{1}=\frac{1}{d_{a}}, R_{b}^{\prime}=P B_{1}=\frac{1}{d_{b}}, R_{c}^{\prime}=P C_{1}=\frac{1}{d_{c}}$ and $d_{a}^{\prime}, d_{b}^{\prime}, d_{c}^{\prime}$ be distances from P to sides $B_{1} C_{1}, C_{1} A_{1}, A_{1} B_{1}$.
Applying lemma we obtain $d_{a}^{\prime}=\frac{1}{R_{a}}, d_{b}^{\prime}=\frac{1}{R_{b}}, d_{c}^{\prime}=\frac{1}{R_{c}}$ and by replacing ($R_{a}, R_{b}, R_{c}, d_{a}, d_{b}, d_{c}$) in Erdös-Mordell Inequality

$$
R_{a}+R_{b}+R_{c} \geq 2\left(d_{a}+d_{b}+d_{c}\right)
$$

with $\left(R_{a}^{\prime}, R_{b}^{\prime}, R_{c}^{\prime}, d_{a}^{\prime}, d_{b}^{\prime}, d_{c}^{\prime}\right)=\left(\frac{1}{d_{a}}, \frac{1}{d_{b}}, \frac{1}{d_{c}}, \frac{1}{R_{a}}, \frac{1}{R_{b}}, \frac{1}{R_{c}}\right)$ we obtain

$$
\sum_{\text {cyc }} R_{a}^{\prime} \geq 2 \sum_{\text {cyc }} d_{a}^{\prime} \Leftrightarrow \sum_{\text {cyc }} \frac{1}{d_{a}} \geq 2 \sum_{\text {cyc }} \frac{1}{R_{a}} .
$$

