Inverse to Erdos-Mordell inequality.

https://www.linkedin.com/feed/update/urn:li:activity:7157094333530177536? utm_source=share&utm_medium=member_desktop

Let *a*, *b*, *c* denote the lengths of the sides of a triangle *ABC*, let d_a , d_b , d_c denote the distances from an arbitrary point *P* inside the triangle to sides *BC*, *CA*, *AB*, respectively, and let $R_a := PA$, $R_b := PB$, $R_c := PC$. Prove that:

$$\frac{1}{R_a} + \frac{1}{R_b} + \frac{1}{R_c} \le \frac{1}{2} \left(\frac{1}{d_a} + \frac{1}{d_b} + \frac{1}{d_c} \right).$$

Solution by Arkady Alt, San Jose, California, USA. Definition.

For any line *l* on the plane and any point $P \notin l$ we denote via P_l such point laying in the half-plane distinct from half-plane marked by point *P* that $PP_l \perp l$ and $PP_l = \frac{1}{dist(P,l)}$.

This point P_l we will call "Involution of P with respect to l" (**Pic.1**)

Let *P* be the interior point in the angle $\angle A$ defined by the two half-lines *a* and *b*. Let d_a and d_b be distances prom point *P* to lines *a* and *b* respectively and R_A be distance between *P* and *A*, i.e. $d_a = PM, d_b = PN, R_A = PA$. (**Pic.2**) We will prove

Lemma.

Let P_a and P_b be involutions of P with respect to a and b respectively. Then $P_aP_b \perp PA$ and $PE = \frac{1}{R_A}$ where E is intersection point of P_aP_b and PA. **Proof**.

Let P_aE_1 and P_bE_2 be perpendiculars from P_a and P_b to \overrightarrow{PA} respectively $(E_1, E_2 \in \overrightarrow{PA})$. Since $\angle PP_aE_1 = \angle PMA$ and $\angle PP_bE_2 = \angle PNA$ (as the angles which constructed by mutually perpendicular sides) then $\triangle PP_aE_1$ similar to $\triangle PMA$ and $\triangle PP_bE_2$ similar to $\triangle PNA$ and from similarity follows

$$\frac{PE_1}{PP_a} = \frac{PM}{PA} \iff \frac{PE_1}{\frac{1}{d_a}} = \frac{d_a}{R_A} \iff PE_1 = \frac{1}{R_A} \text{ and}$$
$$\frac{PE_2}{PP_b} = \frac{PN}{PA} \iff \frac{PE_2}{\frac{1}{d_b}} = \frac{d_b}{R_A} \iff PE_2 = \frac{1}{R_A}.$$

Hence, $PE_1 = PE_2$ and $E := E_1 = E_2$ is intersection point of P_aP_b with PA and $PE = \frac{1}{R_A}$.

Let A_1, B_1, C_1 be involution points for $P \in \triangle ABC$ with respect to lines $\overrightarrow{BC}, \overrightarrow{CA}, \overrightarrow{AB}$ respectively. Let $R'_a = PA_1 = \frac{1}{d_a}, R'_b = PB_1 = \frac{1}{d_b}, R'_c = PC_1 = \frac{1}{d_c}$ and d'_a, d'_b, d'_c be distances from P to sides B_1C_1, C_1A_1, A_1B_1 . Applying lemma we obtain $d'_a = \frac{1}{R_a}, d'_b = \frac{1}{R_b}, d'_c = \frac{1}{R_c}$ and by replacing $(R_a, R_b, R_c, d_a, d_b, d_c)$ in **Erdös-Mordell Inequality** $R_a + R_b + R_c \ge 2(d_a + d_b + d_c)$ with $(R'_a, R'_b, R'_c, d'_a, d'_b, d'_c) = \left(\frac{1}{d_a}, \frac{1}{d_b}, \frac{1}{d_c}, \frac{1}{R_a}, \frac{1}{R_b}, \frac{1}{R_c}\right)$ we obtain

$$\sum_{cyc} R'_a \ge 2 \sum_{cyc} d'_a \iff \sum_{cyc} \frac{1}{d_a} \ge 2 \sum_{cyc} \frac{1}{R_a}.$$